Final- Complex Analysis (2022-23) Time: 3 hours.

Attempt all questions, giving proper explanations.

You may quote any result proved in class without proof (unless, of course, you are asked to prove the result).

- 1. Suppose f = u + iv is holomorphic in a region Ω .
 - (a) Show that ∇u and ∇v are orthogonal. [2 marks]
 - (b) Suppose also that \overline{f} is holomorphic in Ω . Show that f is a constant. [2 marks]
- 2. Suppose the continuous function $f(e^{i\theta})$ on the unit circle satisfies $|f(e^{i\theta})| \leq M$ for all $\theta \in [0, 2\pi)$, and $|\int_{|z|=1} f(z)dz| = 2\pi M$. Show that $f(z) = c\overline{z}$ for some constant c with modulus |c| = M. [6 marks]
- 3. Let a > 0. Compute

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{(x^2+1)(x^2-2x+2)} \, dx.$$
 [8 marks]

[Hint: Consider an upper half disk]

4. Let

$$F(z) = \frac{i-z}{i+z}$$
 and $G(w) = i\frac{1-w}{1+w}$.

Show that $F : \mathbb{H} \to \mathbb{D}$ is a conformal map with inverse $G : \mathbb{D} \to \mathbb{H}$, where \mathbb{H} is the upper half-plane and \mathbb{D} is the open unit disc. [6 marks]

5. Let $h: \mathbb{H} \to \mathbb{C}$ be a holomorphic function that satisfies

$$|h(z)| \le 1 \quad \text{and} \quad h(i) = 0.$$

Prove that

$$|h(z)| \le \left| \frac{z-i}{z+i} \right|$$
 for all $z \in \mathbb{H}$. [6 marks]

- 6. Given two points $z_1, z_2 \in \mathbb{D}$, show that there exists an automorphism ϕ such that $\phi(z_1) = 0$ and $\phi(z_2) = s$ for some real number $s \in [0, 1)$. [6 marks]
- 7. Let $f_k : \mathbb{D} \to \mathbb{C}$ be a sequence of functions such that $|f_k(z)| \leq 1$ for all $z \in \mathbb{D}$ and all k. Let n be a positive integer. Find a constant $C_n > 0$ such that

$$\left|f_k^{(n)}(z) - f_k^{(n)}(w)\right| \le C_n |z - w| \quad \text{ for all } k \text{ and all } z, w \in \mathbb{B}\left(0, \frac{1}{2}\right).$$

where $\mathbb{B}(0,\frac{1}{2})$ is the open disc of radius $\frac{1}{2}$ around 0. [6 marks]

8. Let f be an entire function and let n(r) denote the number of zeroes of f inside the disc B(0,r) of radius r centered around 0. Suppose there exist constants $0 < c < C < \infty$ and $\rho > 0$, $r_0 > 0$ such that

$$cr^{\rho} \le n(r) \le Cr^{\rho} \tag{0.1}$$

for all $r > r_0$. Let z_1, z_2, \cdots denote the *non-zero* zeroes of f.

(a) Show for $s > \rho$ [3 marks]

$$\sum_{k} \frac{1}{|z_k|^s} < \infty. \tag{0.2}$$

(b) Show for $s < \rho$ [3 marks]

$$\sum_{k} \frac{1}{|z_k|^s} = \infty. \tag{0.3}$$

(c) For the function $f(z) = \sin(\pi z)$ verify that (0.1) holds for some $\rho > 0$, and verify (0.2) and (0.3). [2 marks]