Final- Complex Analysis (2022-23)

Time: 3 hours.
Attempt all questions, giving proper explanations.
You may quote any result proved in class without proof (unless, of course, you are asked to prove the result).

1. Suppose $f=u+i v$ is holomorphic in a region Ω.
(a) Show that ∇u and ∇v are orthogonal. [2 marks]
(b) Suppose also that \bar{f} is holomorphic in Ω. Show that f is a constant. [2 marks]
2. Suppose the continuous function $f\left(e^{i \theta}\right)$ on the unit circle satisfies $\left|f\left(e^{i \theta}\right)\right| \leq M$ for all $\theta \in$ $[0,2 \pi)$, and $\left|\int_{|z|=1} f(z) d z\right|=2 \pi M$. Show that $f(z)=c \bar{z}$ for some constant c with modulus $|c|=M . \quad[6$ marks]
3. Let $a>0$. Compute

$$
\int_{-\infty}^{\infty} \frac{\cos (a x)}{\left(x^{2}+1\right)\left(x^{2}-2 x+2\right)} d x
$$

[Hint: Consider an upper half disk]
4. Let

$$
F(z)=\frac{i-z}{i+z} \quad \text { and } \quad G(w)=i \frac{1-w}{1+w}
$$

Show that $F: \mathbb{H} \rightarrow \mathbb{D}$ is a conformal map with inverse $G: \mathbb{D} \rightarrow \mathbb{H}$, where \mathbb{H} is the upper half-plane and \mathbb{D} is the open unit disc. [$\mathbf{6}$ marks]
5. Let $h: \mathbb{H} \rightarrow \mathbb{C}$ be a holomorphic function that satisfies

$$
|h(z)| \leq 1 \quad \text { and } \quad h(i)=0
$$

Prove that

$$
|h(z)| \leq\left|\frac{z-i}{z+i}\right| \quad \text { for all } z \in \mathbb{H} . \quad[6 \text { marks }]
$$

6. Given two points $z_{1}, z_{2} \in \mathbb{D}$, show that there exists an automorphism ϕ such that $\phi\left(z_{1}\right)=0$ and $\phi\left(z_{2}\right)=s$ for some real number $s \in[0,1) . \quad[\mathbf{6}$ marks]
7. Let $f_{k}: \mathbb{D} \rightarrow \mathbb{C}$ be a sequence of functions such that $\left|f_{k}(z)\right| \leq 1$ for all $z \in \mathbb{D}$ and all k. Let n be a positive integer. Find a constant $C_{n}>0$ such that

$$
\left|f_{k}^{(n)}(z)-f_{k}^{(n)}(w)\right| \leq C_{n}|z-w| \quad \text { for all } k \text { and all } z, w \in \mathbb{B}\left(0, \frac{1}{2}\right)
$$

where $\mathbb{B}\left(0, \frac{1}{2}\right)$ is the open disc of radius $\frac{1}{2}$ around 0 . [$\mathbf{6}$ marks]
8. Let f be an entire function and let $n(r)$ denote the number of zeroes of f inside the disc $B(0, r)$ of radius r centered around 0 . Suppose there exist constants $0<c<C<\infty$ and $\rho>0, r_{0}>0$ such that

$$
\begin{equation*}
c r^{\rho} \leq n(r) \leq C r^{\rho} \tag{0.1}
\end{equation*}
$$

for all $r>r_{0}$. Let z_{1}, z_{2}, \cdots denote the non-zero zeroes of f.
(a) Show for $s>\rho \quad$ [3 marks]

$$
\begin{equation*}
\sum_{k} \frac{1}{\left|z_{k}\right|^{s}}<\infty \tag{0.2}
\end{equation*}
$$

(b) Show for $s<\rho$ [3 marks]

$$
\begin{equation*}
\sum_{k} \frac{1}{\left|z_{k}\right|^{s}}=\infty \tag{0.3}
\end{equation*}
$$

(c) For the function $f(z)=\sin (\pi z)$ verify that (0.1) holds for some $\rho>0$, and verify (0.2) and (0.3) . [2 marks]

